
1104 

STUDY OF THE KINETICS OF ELECTRODE PROCESSES BY MEANS 
OF ELECTROLYSIS WITH CONSTANT CURRENT. XVllI.* 

FOLLOW-UP REACTIONS IN A LAYER 
OF COMPLETELY ADSORBED SUBSTANCES 

O.DRACKA 
Institute of Theoretical and Physical Chemistry, 
PurkYIJI! University, Brno 

Received March 14th, 1972 

For the constant current reversal method various cases of follow-up reactions with substances 
completely adsorbed on electrode surface are solved. The schemes of solved cases correspond to 
those types of reaction which have already been solved for the same method for homogeneous re
actions. The results for reactions of completely adsorbed substances are in many respects analog
ous to the results, for homogeneous reactions; however, they differ in certain respects. For suf
ficiently fast irreversible reactions, the transition time after reversing the current, ,,', does not 
depend on the current reversal time, t 1; from the dependence of ,,' on the current intensity, it is 
possible to determine the type and order of the reaction and, with the aid of the dependence of r' 
on the ratio of current magnitudes after and before the current reversal, u, the reactions of com
pletely adsorbed substances can be differentiated from homogeneous reactions. For sufficiently 
fast reversible reactions, the characteristic expression t t/u - ,,' has a positive non-zero value and 
is independent of t 1 ; from the dependence of this characteristic expression on the current intensity, 
it is possible to differentiate among several types of reaction. On the basis of comparison of 
the obtained results with the results for the corresponding homogeneous reactions, qualitative 
conclusions concerning the effect of adsorption on the results for homogeneous reactions are 
ascertained. 

The method of constant current reversal, introduced for studying follow-up chemical reactions l , 

has been adapted to various homogeneous chemical reactions2
- 6 • Voorhies and Davis7 used this 

method for studying subsequent reactions in the layer of a depolarisation product completely ad
sorbed on a carbon electrode and derived the expression for irreversible first order reaction for this 
situation. Duringgalvanostatic study of electrode processes, in which the depolarization product 
is strongly adsorbed on the surface of the mercury electrodeS, it was also found that, in some cases, 
kinetic processes occur in the layer of adsorbed depolarization product, which can frequently 
be formally described as chemical reactions, whatever their actual mechanism may be. 

To widen the usefulness of the constant current reversal method, it thus seems 
suitable to investigate what results can be obtained by this method for various follow
ing chemical reactions, during which the substances taking part in the reactions are 
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Study of the Kinetics of Electrode Processes 1105 

practically completely adsorbed on the electrode surface, so that their diffusion into 
the solution and possible homogeneous reactions in solution are completely negligible. 
Thus we will solve for this case those types of reactions, which have been already 
solved for the homogeneous case l

-
6

. The solved reactions then proceed according 
to the schemes 

kb 

K = kalkb' (A) R :( ) Z 
k. 

kl 

K = k j lk2 , (B) 2R Eo ) Z 
k, 

k, 

K = k 2lk j , ( C-a,b) R E: ' Y + Z or 2Z 
kl 

kb 

K=kalkb' (D-a,b) 2R ( ) Y + Z or 2Z 
ka 

mR 
k 

products (E) --
R ~ products, 2R ~ products, (F) 

R ~ S ~ products. (G) 

R is always the completely adsorbed depolarization product, which is produced 
(and, after current reversal, consumed) in the electrode process 0 ± ne +± R, the 
substances Y and Z are electroinactive, the substance S is completely adsorbed and 
after current reversal is discharged only after the substance R is used up. The transi
tion time after current reversal, rr, measured from the time of reversal of the current 
direction, tj,is always obtained when the substance R has been consumed; in the case 
of Scheme (G), the second transition time, T;, measured from the first transition time, 
T~, is attained when the substance S has been consumed. 

In addition we will assume that the concentration of substance R and all the other 
products (Y, Z, S) is zero at the beginning of the electrolysis. Identically as with 
the previous cases 1- 6, we will represent the current before current reversal as j and 
after current reversal as i, their ratio as ilj = u, and the Faraday constant as F. 

THEORETICAL 

In agreement with earlier works, we will indicate the concentrations of the adsorbed substances 
by the symbol r with a subscript corresponding to the substance. During the solution we will 
first discuss first order reactions in detail (Scheme A); then, similarly as with homogeneous 
reactions 1 , conclusions obtained from the physical interpretation of the results of this solution 
enable us, to use simplifications for more complicated reactions. 

In all cases solved below, the following initial condition is valid: 

t = 0: rR = 0 ·, rZ = 0, ry = 0, rs = 0 (1) 
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1106 Dra~ka : 

and the relationship for the transition time is obtained from the condition: 

(2) 

To simplify writing equations we can also introduce the step function h(t1,j/ - i) given by 
the relation 

(3) 

For the individual schemes given above, description and solution of the problem is as follows: 

Scheme A: 

where condition (1) holds. 

dTR/dt = h(t1,j/ -i)/nF- kbTR + kaTZ' 

dTz/dt = kbTR - kaTZ' 

From equation (4a, b), it follows that 

so that from equation (4a) we can eliminate rz and write 

(4a) 

(4b) 

(5) 

By solution of equations (6) and (1) by a similar method as in the work 1 , we obtain the relation 

t > t1: rR = Ukb /nFk2) [(1 - e- kt) + Kkt]-

.- [(i + j) kb /nFk2] [(1 - e-k(t-t1») + Kk(t - t 1)], 

where k = ka + k b , 

(7) 

(8) 

For the transition time we obtaio, after rearrangement using condition (2) and equation (7), 
the relation 

,' = ttlu - [u + e-k(t1+t') - (u + 1) e-kt']/ uKk. (9) 
If 

(10) 

relation (9) simplifies to give 

t Ii u - " = 1/ Kk . (11) 

By another rearrangement we obtain from equation (7), for the transition time, the relation 

kr' = In {(u + 1 - e-kt1)/ [u - Kk(t1 - u,')]}. (12) 

As follows from the analysis of the results given below, it always holds that,' ~ tdu. Thus, if the 
following condition is valid 

(13) 

relation (J 2) simplifies to give 

h' = In [(u + 1 - e-kt1)/ u]. (14) 
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Further, if the following condition holds 

e- kt , ~ 1 (15) 

we obtain from equation (J 3) the relation 

h' = In [(u + l)/u] . (16) 

Physical Interpretation of the Obtained Results 

Condition (13) is, of course, fulfilled for K ~ 0, so that relation (14) which is de facto 
identical with the relation derived by Voorhies and Davies 7, corresponds to the case 
of an irreversible reaction. As with homogeneous reactions1

, the condition of suffi
cient irreversibility also encompasses the time of current reversal, t 1. In practice, 
condition (13) may be considered as fulfilled if 

Kktdu < 10- 2 . 5 . (17) 

Condition (15) will be easily fulfilled if 

kt1 > 6, (18) 

which is the same as the condition of sufficiently large t 1 with irreversible homogeneous 
reactions1 . As with homogeneous reactions, the transition time .. ' is then independent 
of t 1 , as is given by relation (16). This situation, however, can occur - similarly as 
with homogeneous reactions - only with sufficiently low values of K; conditions 
(17) and (18) cannot be simultaneously fulfilled ifit does not hold that K/u < 5 . 10- 4

• 

From condition (18) and relation (16) can be further obtained the condition 

t1 > .. ' . 6/ln[(u + l)/u]. (19) 

Relation (11) corresponds to the case of a sufficiently fast reversible reaction. The 
condition of a sufficiently fast reaction (10) will , for usual values of u, be easily 
fulfilled in practice if, as with homogeneous reactions, 

h' > 6, (20) 

which, with relation (11) leads to the inequality 

Kkt du > 1 + 6 K . (21) 

From the view point of the constant current reversal method, the reversibility or 
irreversibility of the reaction is therefore given by the size of the expression Kktdu. 

Relation (11) can, under certain conditions, be derived in an easier manner, analogous to the 
method of the reaction la~er9 with homogeneous reactions . From relations (5) and (2) it may be 
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easily obtained that 

t=t1 +r': TZ =U(tl + r')-(i+j)r'l/nF. (22) 

If we assume the attainment of a quasi-stationary state after current reversal and if we thus 
ignore the time derivation on th\i left-hand side of equation (4a), we obtain from this equation -
taking into account relation (2): 

t = t1 + r': Tz = ijnFka . (23) 

If K ~ 1, i.e. if the chemical equilibrium is sufficiently shifted towards the final product of the 
follow-up reaction, i.e. substance Z, then k. = Kk and relation (11) follows from equations (22) 
and (23). 

The described analysis gives us a method for solving more complicated cases for 
which a general and rigorous solution would be too difficult. 

Schemes (B), (C), (D): These can be solved together since the approach will be the same in all 
cases and the solution results will be similar. The solution will be carried out by the simplified 
method, which we arrived at above from analysis of the results for first-order reactions for suffi
ciently fast reversible reactions with equilibrium shifted towards the final products of the follow-up 
reaction. 

The problems are described by the equations 

Scheme (B): 

Scheme (C): 

dTR/ dt = h(t1 ,j/ -i)/nF- k2Tl + k l Tz 

dTz /dt = tk2Tl- tklTZ 

dTz/ dt = h(t1,jj -i)/nF- kJR + k2Ti 

dTz /dt = ak1TR - ak2ri 

for case (C-a), a = 1, for case (C- b), a = 2. 

Scheme (D): dTR/dt = h(t1,j/- i)/IIF- kbrl + kaTi 

dTz /dt = akbTj: - ak.Ti 

(24a) 

(24b) 

(25a) 

(25b) 

(26a) 

(26b) 

for case (D-a), a = I j 2, for case (D - b), a = 1, while the system of equations for each scheme 
is complemented with conditions (1). ' , 

From the given equations it follows that it holds in all cases that 

(27) 

where, for scheme (B), a = t . From relation (27) and conditions (1) and (2) then follows an 
equation analogous to equation (22) 

t = t1 + r': T z = aUt1 - ir')/nF. (28) 

Neglecting the time derivation in equations (24a) , (25a) and (26a) and substituting relation 
(28) and condition (2), we obtain after rearrangement the relations 

Scheme (B): (29) 
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Scheme (C): 

Scheme (D): 

td u - r:' = (nF/ ik2)1/2/ a . 

td ll - r:' = (nF/ ika)I/2/ a . 

1109 

(30) 

(31) 

The conditions of the equilibrium being sufficiently shifted towards the end products of the 
reaction and of a sufficiently fast reaction can be described by inequalities in individual cases: 

Scheme (B) : 

Scheme (C): 

Scheme (D): 

Kkl nF/ i < 10- 2
, r:' i/ nFK > 6, 

td u > (2Ik I ) [1 + 3Kk i nF/ i]. 

K(i/ nFk2)1/2 < 10- 2 , kIr:' > 6 

ti /u > (nF/ ik2)1/2 a- 1[1 + 6aK(i!nFk2)1/2] 

K < 10- 2 , r:'(ik. /nF)1/2/ K > 6 

td u < (nF/ ik.)1 /2 a-I[l + 6aKj. 

(32) 

(33) 

(34) 

The numerical constants, given in these inequalities, represent, of course, only a rough estimate 
based on analogy with the results of the previous cases and with homogeneous reactions with the 
same reaction schemes. Especially the constant, 10- 2, in the first inequality of each scheme was 
estimated to within an order of magnitude. With reference to the first inequality in each scheme, 
the expression in square brackets in the third inequality is always close to unity, so that, consider
ing the minimum value of the first inequalities and their approximate character, it can be replaced 
by the approximate value 1.1. 

Scheme (E). For Scheme (E), the problem is described by the equation 

(35) 

and condition (1) If we analyze equation (35) and conditions (1) and (2) in a similar way as that 
with hoinogeneous reactions of the same type2

, we come to the conclusion that it generally 
applies that 

dkr:' = f m(u, akt 1) , (36) 

where 
a = (J/nFk)(m-l) /m (37) 

and f m(u, akt 1) is a certain function of its argument whose form depends on the reaction order, m. 
If the reaction is sufficiently fast, so that 

(38) 

then the given function does not depend on t l' which can be described by the relation 

(39) 

To obtain a concrete form of the function in equation (36) or at least (39), equation (35) with 
conditions (1) and (2) must be solved for each value of m individually. For m = 1, Scheme (E) 
becomes a special case of Scheme (A); in that case, equations (12) and (16) correspond to equa
tions (36) and (39), and inequality (38) is specified by inequality (18). Below we will further 
derive the form of the given functions for the cases when m '= 2 and m = 3. The case when 
m = 2 is important from the point of view of known reactions of the second order, the C\lse with 
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m = 3 is notable in that the dependence of,' on j for large values of t 1 is the same as with homo~ 

geneous reactions of the second order. 

The case when m = 2. By integration of equation (35) in the region before current reversal 
with the aid of condition (1) we get 

(40) 

By integration of equation (35) in the region after current reversal, using the condition of the 
continuity of the time dependence of r Rand eq uation (40), we get the relation 

For the transition time it then follows from equation (41) and condition (2) that 

(42) 

When the inequality 

(43) 

holds, then relation (42) simplifies to the equation 

(44) 

Relations (42) and (44) are, for the given case, concrete forms of relations (36) and (39) and 
inequality (43) specifies inequality (38). 

From condition (43) and relation (44) follows the condition 

(45) 

The case when m = 3. For the sake of simplicity, we will, in this case, limit ourselves to deter
mining the concrete form of equation (39) and specification of inequality (38). To simplify the 
notation, we will further introduce the dimensionless variable y, for which the general relation 
has the form 

(46) 

By integration of equation (35) in the region before current reversal and with the aid of condition 
(1) we obtain the relation 

0 < t < t1: In [(y - 1)2/ (1 + y + y2)]_ (6/ ,J3) arctg [(2y + 1)/ ,J3] = 

= -6akt - 1t/ ,J3. 

From equation (47) it follows that, if 

akt1 > 2·4 
then we can write 

(47) 

(48) 

(49) 

By integration of equation (35) in the region after current reversal and from condition (49) 
we obtain 
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Study of the Kinetics of Electrode Processes 1111 

t > II : In[(u l / 3 + y)2/(u2/3 - yu1/3 + y2) + (6 / J3) arctg [(2y - /l1/3) / u l /3 J3] = 

= -6u2/3ak(t - II) + In [(u l / 3 + 1)2/ (u2/3 - 111/3 + 1)] + 
+ (6 / J3) arctg [(2 - 111/3)/ u 1/3 J3]. 

For the transition time then follows from equation (50) and condition (2) that 

ak1:' = (1/6u2/3) In [(u l
/
3 + 1)2/ (u2/3 _ u l / 3 + 1)] + 

+ 0 / u2
/
3 J3) arctg [(2 - 111 /3)/ u l

/
3 J3] + rt/ u2

/ 3 6 J3. 

(50) 

(51) 

Equation (51) is, for the given case, a concrete form of equation (39) and inequality (38) is 
specified by inequality (48). From inequality (48) and relation (51) it is possible, similarly as in the 
preceeding case, to derive an inequality between II and T', which is the condition under which 
equation (51) holds. 

Scheme (F). The problem is given by the equation 

(52) 

and by condition (1). For simplification of notation we introduce the symbols 

b = 4k2i/nFki, G = (1 + b)I/2 

a = (1 - bu)I/2, (! = (bu _ 1)1/2. (53) 

By integration of equation (52) in the region before current reversal and with the aid of condition 
(1), we obtain 

Further, we introduce 

(55) 

The integration of equation (52) in the region after current reversal must be carried out separately 
for two cases according to the value of the product bu. By carrying out the integration and with 
the condition of the continuity of the time dependence of rR and from relations (54) and (55), we 
obtain the relations 

I > 11' bu < 1: rR = (k l /2k2) {2a(w + a)/ [w + a 

- (w - a) exp (-k l a(t - II))] - a _. I}, 

I> t l • bll > 1: rR = (kd2kz) {(!w/cos2 (kl(!(1 - ( 1)/ 2) . 

. [(! + w tg (k l (!(1 - (1)/ 2)] - Cltg (k l (!(t - (1)/2) - I}. 

(56a) 

(56b) 

From relations (56a, b) we then obtain, with the aid of condition (2), for the transition time after 
current reversal 

bu < 1: kiT' = (l/a) In [(1 + a) (w -- a)/(w + a) (1 - a)] • 

bll > 1: kiT' = (2/Q)arctg [Cl(W - 1)/(Q2 + w)]. 
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1112 Dracka : 

For bu = 1 we obtain from both relations using the limiting transitions 

bu = 1: kl" = 2(w - l) /w. (57c) 

For b -)- 0, relation (57a) is converted into relation (14) and for b -)- 00 , relation (57b) is converted 
into relation (42). From relation (55) it is clear that, if the inequality 

holds, then practically 
W = Ii 

and thus " is then independent of (1' according to relations (57). 

Scheme (G). The problem is described by the equations 

dTR/dt = h(t1,j/- i)/nF - k1TR , 

dTs/dt = h(tl + '1' O/- i)/nF + klTR - k 2T s , 

(58) 

(59) 

(60a) 

(60b) 

(60c) 

and condition (1). Solution of these equations in a similar manner as in Scheme (A) leads, for 
the region (1 ~ t ;:;;; (1 + '1 and for k2 :j:: k 1, to the relation 

Ts = [jk1 /nF(kl - k 2)] {(1 - e~kzt)ik2 - (1 - e-k1t)/ k 1 - (u +- 1). 

[(1 - e- k2 (t-t 1»)/ k 2 - (1 - e- k1 (t-t 1» / k 1]}, (61) 

while '1 is given by relation (14). The surface concentration of substance S at time ( + '1 is 
denoted as (TS)tl" From equations (61) and (14) we obtain 

Solution of equation (60b) in the region ( ~ (1 + '1 with reference to condition (60c) leads to the 
relation 

(63) 

From the fact that, at the second transition time, Ts = 0, we obtain, from equations (62), (63) 
and (14) for '1 the relation 

']./'1 = (k 1 / k 2) In {I + [(u + 1 - e- k2t1 ) [u/ (u + 1 - e-k1t1)]kzikl_ 

- u]/u(l - k 2/k1)} / ln {(u + 1- e-k1t,)/u}. (64) 

If simultaneously the conditions 

(65a, b) 

hold, then equation (64) simplifies to relation 

,'zfr't = (kdk2) In {1+ [(u + 1) [u/ (u + 1)]k2ikl - u]/ u(l -- k 2/ k 1)} / ln {(u + l) / u}. (66) 

The limiting transitions of relation (66) give 

k2 /kl --->- 00 : ''zfr't--->- (k 1/k 2)2/ ln {(u + l)/ u}, 

k2 /k l --->- 0: '2/'1 --->- kdk2 . 

(67a) 

(67b) 
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Relations (64) and (66) are indefinite at the singular point for k2 = kl = k . For this point we 
obtain, by direct solution ot equations (60a, b) with condition (1), in place o'f relation (61), the 
relation 

and instead of equation (62), the relation 

(69) 

Employing relation (69) instead of relation (62) in equation (63) then leads, rather than to rela
tion (64), to the relation 

'2 /'1 = In {I + In [(u + 1 - e-ktl) /u]_ 

- kll e~ktl/(u + 1 - e-k")}/ ln {(u + 1 - e-ktl)/ u} . (70) 

For 
(71) 

equation (70) simplifies to the relation 

'2/'1 = In {I + In [(u + l)/u1}/ ln {(u + l)/u}. (72) 

Condition (65a) is fulfilled when inequality (19) is valid for 'I. Condition (65b) may, in the 
region k2 < k l , be replaced by the condition 

(73) 

Condition (73) is equivalent to condition (65b) at the points k2 = k1 and k2/k1 -->- 0; in the region, 
k2 < k l , fulfillment of condition (73) ensures the fulfillment of condition (65b), while the in
crease in the value of 11, required by condition (73) compared to condition (65b), is negligibly 
small. In the region, k2 > k l , condition (65b) is always fulfilled by condition (65a) and when 
inequality (19) is valid, inequality (73) is always fulfilled. Thus, a sufficient condition for the vali
dity of equation (66) is given by simultaneous fulfillment of inequalities (19) and (73). 

RESULTS AND DISCUSSION 

The results of the solution show that, as with homogeneous following reactions, also 
with follow-up reactions of completely adsorbed substances we can distinguish two 
characteristic cases: reversible and irreversible reactions; thus we will consider each 
case separately below. 

Reversible Reaction 

For homogeneous follow-up reversible reactions, the expressions {[(l + tr/-r:')1/2 -

- 1 J/u - l} . .J 7:' is characteristic and for sufficiently large values of t 1 - i.e. for 
sufficiently fast reactions - it does not depend on tl and u. Similarly for the follow
up reversible reactions of completely adsorbed substances, according to analysis 
of results, the characteristic expression is t I/U - 7:', which for sufficiently fast reactions 
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attains a limiting value independent of t1 and u. The transition of the given charac
teristic expression to the limiting value with increase in t 1 is shown in Fig. 1 for re
action according to Scheme (A). For other reversible reactions, this transition has 
a similar character and changes in the magnitude of the equilibrium constants and 
u affect it in the same way. In the case when, with a completely adsorbed depolariza
tion product, no chemical reaction occurs, or~ = tdu. The value of the characteristic 
expression, t1/u - or', can then be physically interpreted as a deviation caused by 
a chemical reaction. 

Relations for the expression, t1/u - or', for sufficiently fast reversible follow-up 
reactions of completely adsorbed substances and conditions for the validity of these 
relations can be summarized as follows: 

Scheme (A): k-r' > 6, Kkt1/u > 1 + 6K : 

t1/u - or' = l/Kk (k = ka + k b) • 

H) 

Kk(t,/u-t'l 

0·5 

FiG. 1 

0-5 1·0 Kkt,/u 1·5 

The Dependence of the Characteristic Ex
pression tdu - 7:' on tl for Reversible 
Follow-up First Order Reaction of Comple
tely Adsorbed Substances 

1 K = 0'1, u = t; 2 K = 0'1, u = 1; 
3 K = 0'1, u = 3; 4 K = 0'01, u = 1; 5 
the limit f~r K ->- 0; 6 the limit for ktl ->- 00. 

10.----.-------,---

-2L-~-------~----t,-~~· 

FIG. 2 

The Dependence of the Characteristic Ex
pression on t 1 , for Fast Reversible Reactions 

u = 1, the characteristic eXpression corres
ponding to each kind of reaction follows 
always a straight line 1 to which values on 
both axes are relatively related. 2 Y = t tlu -
- 7:' for homogeneous reactions; 3 Y = 

= {[(1 + td7:')1/2 - l]/u - I} ,J7:' for the 
reactions of completely adsorbed materials. 
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Scheme (B): KklnFji < 10- 2
, r'ijnFK> 6 , k 1t1 j2u> 1.1 : 

t1ju - r' = 2jk1 . 

Scheme (C): K(ijnFk2)1/2 < 10- 2
, k1r' > 6, (k2ijnF)1/2 rxtJ/u > 1.1 : 

tJ/u - r' = (nFjik2y/2jrx 

for (C - a), a = 1; for (C - b), rx = '2 . 

Scheme (D): K < 10- 2
, -r'(ika jnF)1/2jK> 6 , (kaijnF)1/2 rxtJ/u > 1-1 : 

t1ju - r' = (nFjika)1 /2jrx 

for (D - a), rx = 1j2; for (D - b), rx = 1. 

1115 

Similarly as with homogeneous reactions 5 we can always interpret the condition 
containing t1 as a condition of sufficient reversibility and the condition containing r' 
as a condition of a sufficiently fast reaction. The first condition given with Schemes 
(B), (C), and (D) is always the condition of the chemical equilibrium being sufficiently 
shifted towards the products of the reaction. 

It is further seen in the given relations that, in some cases, the characteristic 
expression depends on the current after reversal, i. As opposed to homogeneous 
reactions5 , however, this dependence indicates only the order of the reverse reaction 
(i .e. according to the given schemes, the reaction from right to left). 

A problem which still deserves attention is the question of differentiating between 
homogeneous reactions and reactions of completely adsorbed substances. Analysis 
of relations for follow-up reversible reactions shows that, in both cases, r' increases 
with increasing t 1 • If we, however, use the characteristic expression which does not 
correspond to the case solved, then this expression depends on t1 even with fast 
reactions; an example of this is given for illustration in Fig. 2. 

In addition, the given illustration enables us to arrive at one more qualitative 
conclusion: homogeneous reactions and the reactions of completely adsorbed sub
stances can be regarded as limiting cases and from the functions shown in Fig. 2 
we can generally deduce that the effect of adsorption appears with homogeneous 
reactions as a decrease in the values of the characteristic expression with an increase 
in tl and the effect of diffusion on the reactions of adsorbed materials as an increase 
in the values of the characteristIc expression with increasing t1 • 

Irreversible Reactions 

With irreversible follow-up reactions of completely adsorbed depolarization products, 
-r' does not depend on tl for sufficiently fast reactions, as with homogeneous reactions. 
The transition of -r' to the limiting value with increasing tl for reactions of the first 
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and second order is given in Fig. 3; the analogy with the function for homogeneous 
reactions! is obvious. Analogously as with homogeneous reactions, the condition 
of a sufficiently fast reaction can be represented by an inequality between tl and -r'. 
Similarly as with homogeneous reactions, for first order reactions -r' is, for a given 
value of u, independent of the current intensity, but is dependent on it for higher 
order reactions. The dependence on the current intensity for higher order reactions is, 
however, different for completely adsorbed substances than for the corresponding 
homogeneous reactions. 

The general relation for sufficiently fast reactions of completely adsorbed depolariza
tion products proceeding according to Scheme (E), and the condition of a sufficiently 
high reaction rate have the form: 

where fm{u) is a function of u, whose form depends on the reaction order, m, and gm 

11. 0·1 

1.0·1 

11.1 

1.1 

ale!, 6 

FIG. 3 

The Dependence of " on t 1 for Irreversible 
Follow-up Reactions of a Completely Ad
sorbed Depolarization Product 

Roman numerals indicate the reaction 
order, arabic numbers, U, and lines are 
asymptotes for t 1 -+ 0 and t -+ 00. 

-1 

-~l-----------'~-----~--U--~ 

FIG. 4 

The Dependence of ,'/ (,')u=1 on U at Con
stant j for Irreversible Follow-up Reactions 
Plotted in log-log Co-ordinates 

The numbers correspond to the reaction 
order, the indexed numbers correspond to 
homogeneous reactions, the un-indexed 
numbers to reactions of a completely ad
sorbed depolarization product. 
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is a constant whose value also depends on m. From the given relation it can be seen 
that the dependence of log 't" on log j is a straight line, from the slope of which it is 
possible to determine the reaction order, m, similarly as with homogeneous reactions2

• 

The slope of this line is, however, different than with homogeneous reactions; it is 
worth mentioning that the slope for third-order reaction of completely adsorbed 
depolarization products is the same as with second order homogeneous reaction. 

For the most important types of first and second order reactions, the relations 
for 't" and the conditions of their validity have a concrete form: 

m = 1: tl > '[' . 6jln [(u + l)juJ : h' = In [(u + l)juJ ; 

m = 2: tl > '[' . 3u1/ 2 jarctg (U- 1/2) : (kjjnF)1 /2 '[' = U- 1/2 arctg (U- 1/2). 

From what has been said it is clear that, from the dependence of the transition time, '[', 
on the current, j, and on the time of current reversal, t1 , determined during the 
experiments, it is difficult to distinguish between homogeneous reactions, and re
actions of adsorbed materials. However, it is possible to distinguish between them 
using the dependence of '[' on the ratio of the current intensities, u. For illustration, 
the dependence of '['j( 't")u = 1 on u at a constant j is given in Fig. 4 for 1st and 2nd 
order homogeneous reactions and for 1st, 2nd, and 3rd order reactions of completely 
adsorbed substances. It is clear that cases with the same dependence of '[' on j (i.e . 1st 
order reactions homogeneous and in the adsorbed layer, second order homo
geneous reaction and 3rd order reaction in the adsorbed layer) can easily be 
distinguished in this way. 

Similarly as with reversible reactions, here we can also regard reactions of comple~ 
tely ads.orbed depolarization products and homogeneous reactions as two extreme 
cases and draw the conclusion that the effect of adsorption in homogeneous reactions 
will be manifested in the dependence of '[' on u varying between the dependences 
for the two extreme cases. This fact was actually verified by detailed analysis of the 
effect of adsorption on the linear isotherm in the case of first order homogeneous 
reaction 10. 

The reaction according to Scheme (E) is a limit of reactions according to Schemes 
(A) to (D) for K ~ 0; from reactions according to Schemes (A) and (C) we 
obtain the case when m = 1, from the reactions according to Schemes (B) and (D), 
the case with m = 2. The condition of sufficient irreversibility of these reactions -
i.e. the possibility of applying the relations for an irreversible reaction - can be 
obtained from the conditions for sufficient reversibility given for the reverse re
actions (i.e. conditions containing t1) by reversing the sense of the inequality and 
substituting the value 10- 2 , 5 for the right-hand side of the inequality, 

For first and second order parallel reactions according to Scheme (F), the relatioll 
for 't" for a sufficiently fast reaction and the condition of its validity have the form 
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t1 > .' . 6e/f1,iu, b) : k1.' = f1,Z(U, b), 

ub < 1 :f1,Z(U, b) = (l/a) In [(1 + a) (e - a)/(e + a) (1 - a)] , 

ub = 1 :f1,iu, b) = 2(e - l)/e, 

ub > I :f1,Z(U, b) = (2/e) arctg [e(e - 1)/(eZ + e)] , 

Dracka: 

e = (1 + b)1/Z, a = (1- Ub)1/Z, e = (ub- 1)1/z, b = 4kzj/nFki . 

Analysis of these relations gives results very similar to those for the parallel homo
geneous reactions of various orders6

• The dependence oflog.' on logj is a continuous 
convex curve, with two asymptotes; the asymptote for j --+ 0 corresponds to the 
linear dependence for a lower order reaction; the asymptote for j --+ <Xl corresponds 
to the linear dependence for a higher order reaction. If we shift the curves for various 
values of u so that their asymptotes are superimposed, their courses are very similar. 
From the course of the dependence of't" on j, the rate constants for both reactions 
can be determined using the given relationships. In the regions, when the effect 
of one reaction predominates, and the effect of the other reaction appears only as 
a perturbation of the relationship for a controlling reaction, the values for the pre
dominating reaction can be obtained by extrapolating the appropriate simple de
pendences to zero; for predominating first-order reactions, this is the dependence 
of 1/.' on j, for predominating second order reactions, of 1/( 't" .Jj) on l/.Jj. The 
value of the quantity 6e/f1,Z( u, b) in the condition of sufficient rate always lies between 
the values for similar quantities in the conditions of sufficient rate of simple 1st and 
2nd ' order reactions, given above; thus the inequality will always be fulfilled for 
parallel reactions if the inequality given for first order reaction is fulfilled. 

For consecutive reactions according to Scheme (G), the following relationships 
hold, for sufficient rates of both steps, for the consecutive transition times, 't'~, and .~: 

t1 > 't'~. 6/10 [(u + l)/u] , t1 > [.; + 't'~(1 - h(u))]. 6/1n[(u + l)/u] : 

k1.~ = In [(u + l)/u] , 

k1 =1= kz : 't';/'t'~ = (kdkz). In {I + [(u + 1) [u/(u + 1)]k2/kl -

- u ]/u(l - kz/k1)}/ln {(u + l)/u} , 

k1 = kz : .~/'t'~ = In {1 + In [(u + l)/u]}/ln {(u + l)/u} = h(u). 

Using the given relationships, it is possible to determine the rate constants of both 
reaction steps from the measured transition times. For numerical calculations, using 
the given equations, the fact that, as opposed to homogeneous consecutive re
actions3

, kz/k1 < .~/'t'~ always holds, is useful. 
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